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Measurements have been made to determine the third order elastic

ABSTRACT ™

constants of NaCl and KC1 single crystals. The relations between the
velocities of ultrasonic waves propagating along the [110] and [112]
directions under a uniaxial compression applied in the [111] direction:
and the elastic constants were derived. Six velocities of these ultfa-
sonic waves were then measured at room temperature as functions of the
strain using the pulsed ultrasonic interference technique. From the
present measurements under the 111> compression and those under the
hydrostatic pressure by Lazarus, eleven equations were obtained for
both NaCl and KC1l crystals. From these equations, the following five
constants (Brugger's definition for the third order elastic constants)

in units of 10°° dynes/cm2 were solved by the method of least squares:

€111*%C112 ©1117%123 Ci56 C144 C166

NaCl -9.91+.04 -9.10+.08 .271+.014  .257+.016 -.611+.007

KCl -7.44+.01 -7.15+.02 .118+.004  .127+.005 -.245+.002

The Cauchy relation C456=C144 is seen to be satisfied to within the

+ This work is based on a portion of a thesis submitted in partial fulfill-
ment of the requirements for the Ph.D. degree.at Rensselaer Polytechnic
Institute, 1964.
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probable error in both NaCl and KC1 crystals at room temperature. By

assuming the validity of the other two Cauchy relations, one can estimate

the constants Clll’ C112 and C123 as follows:
“111 112 €23

NaCl -8.80 -.571 .248

KC1 -7.01 -.224 .113
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I. INTRODUCTION

The third order elastic constants are quantities of interest becaus¢
they relate to the anharmonic properties of the crystal lattices. Their
values determine in the long wavelength limit the phonon-phonon coupling
which limits the thermal relaxation time. They also contribute to the
thermal expansion and to the lattice specific heat at temperatures higher
than the Debye characteristic temperature. They are manifest in the non-
linear properties of sound waves in a solid, e.g., the second harmonic
generationl, the intersection of two sound beams to generate a third
beamz, and the asymmetry in the diffraction pattern formed by passing
nomochromatic light through a cubic crystal perpendicular to the direction
of a sound wave3.

In determining the third order elastic constants, we have chosen the
direct method of observing the change of sound velocity in a solid under
compression. Accurate velocity measurement is necessary since the velocity
change is usually small in the available pressure range. The introduction
of an interference method enables the detection of quite small changes in
the velocity and opens the way for the measurement of the third order
elastic constants.

So far the variation of sound velocity with stress has mostly been
measured under hydrostatic pressure. In order to obtain the complete set
of the third order elastic constants of a material, other conditions of
stress, such as uniaxial compression, have to be applied. The difficulty
lies in that even a low uniaxial stress can initiate slip and plastic de-

formation, and the dislocations generated by such flow will cause large



.

effects that mask the true third order constants of the bulk material.

Up to the present, very few measurements have been made to determine the
whole set of the third order elastic constants. The first measurement
was made by Hughes and Kelly4 (1953) who determined the three independent
third order elastic constants of the isotropic materials: polystyrene,
Pyrex, and Armco iron. In 1961, Bateman, Mason, and Mcﬁkimin5 determined
the six independent third order elastic constants of germanium, a first
experiment of this kind on a cubic material.

Alkali halides are substances of interest from the theoretical point
of view because a simple model of their structure has been quite success-
ful. No complete determination of their six independent third order elas-
tic constants has yet been made. The variation of elastic constants has,
however, been measured by Lazarus6 (1949) and Bartels7 (1964).

Although there are many easy slip systems in NaCl-type alkali halides,
it turns out that the resolved shear stress in the primary easy slip
directions, <110 >in the slip planes {110},are zero for uniaxial stress
applied in a {;11} direction. For this orientation of stress the elastic
range in which one can make measurements without yielding is considerably
extenced.

II. THEORY

In the present paper Brugger's definition of the third order elastic
constants8 is used. With his definition, the strain energy ¢ in a cubic
lattice can be expressed in terms of the strain components as:

1 2 2 2
¢ =75 C11 (n11 + npp + n33) + C12 (11 n22 + na2 Mm33+ N33 n)



*

2 2 2 2 2 2 1 3 3 3
+ Cuu (nyz + m2y + 03 +n32 + n3y +ny3) + £ Cryy (nyy + ngp + n33)

2 2 2
Cll?{”ll (n22 + n33) + np2(n3z + nyp) + n33 (ngp + ﬂzz)}

+
PO [

+ Cy23 n11np2m3 + Cuse (g2 + n2p) (np3 + n32) (n3y + np3)

- 2 2 2 2 2 2
+ Cluu{ﬂll (n23 + n32) + npy (ny13 + n3;) + n33(ngpt 021)}

- 2 2 2 2
+ CIGG{(”II + n32) (ny2 + n2p) + (g2 + m33) (np3 + n32) +

+ (n33 + n11) (ﬂ§1 + n§3i} (1)
where n,s are the components of the Lagrangian strain which are defined in
the following matrix equationloz

] =3 (37 - E] (2)
Here J is the Jacobian relating the final position of a particle in the
lattice after deformation and its initial position, and E is a unit matrix
of rank 3.

For the convenience of comparison with the expressions in other lit-

eratures, the relations between the Cijk defined by Brugger (C§§k) and by
Birch9 (CI,Si ) are listed below:
ijk
cify = scily , i, = 211, , €15 = 1z
*

ry - LB, or, - Lo, ol - 1ol
(* The relation between Birch's Cugg and Brugger's Cu5g should be
cfﬁe ='% CE%B, not'% as obtained from eq.(13) in Brugger's papers, if

the Cysg term in the expression of the strain energy is

9
Cusg (ni2n23n3a] + n2in32ny3) as it is in Birch's paper”,
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For the stress applied in the [111] crystallographic direction, it is
easier to transform the calculation in a new coordinate system with the
1', 2' and 3' -axes in the [111], [110] and [112] directions respectively.
Hereafter a single prime will be used to denote the quantities referred to
the new coordinate system. The transform matrix [R] relating these two
coordinate systems by the matrix equation

X Ix

y:= [R] }y
Zq {-2
is found to be

/1 1 1]

Rl=1v3v/37/3
11
vz 0
o1 1 2
"/?/‘6»"3} (3)

The relation between the strains in the two coordinate system is
. 1 A

[n] = [R] [n"] [R] or [n"] = [R] [n] [R] (4)

As in Birch's analysisg, let us consider a deformation in which the
final position (x', x', x') of a particle initially at (a', a', a') is

1 2 3 1 2 3

given by

[x'] = [A') [a'] + [ U' 3", D] (5)

where [x'], [a'], and [U'(Z', t)] are column vectors standing respectively

for the final, the initial position, and an infinitesimal displacement which
is a general function of the initial position ;' and the time t, and [A'] is
a 3x 3 matrix describing a finite homogeneous deformation due to an initial

stress. From (5), the Jacobian



s(x', x', x')
1 2 3

8§(a',a', a')
1 2 3

and hence the Lagrangian strain n can be calculated.
If one takes into account the fact that the three cubic axes are
equivalent with respect to the [111] direction, then for a uniaxial stress

in the [111] direction, the suffixes 1, a and 3 in nij are interchangeable,
i.e., N1y = ng2 = n33 and njz= nz3 = n3 ), and from (4) one can show

ni1 = n11 + 2n nd2=n'" =n -n andn' =n'" =n' = (0. Hence the
h 11 12, n3 33 11 12 12 23 31

1', 2' and 3' -axes form a set of principal axes with the strain being iso-

tropic in the plane normal to 1' -axis, and thus the matrix A' is diagonal

(0)
with A;Z = A;3. The Laprangian strain n' resulting from this initial
13
uniaxial stress are
0 _1 .2 n
n' =5 (A" -1) =a
11 2 "1 !
2
I O O T
22 33 22
n'(o) = 0 for i+ j (6)
ij
In the finite deformation theory, the stress and the strain are related
ble
Py " &(n(n")) e
('] =213 | ——] 0] &)
o]

where [T'] is the stress tensor, Py and p, are the initial and the final
density respectively.
For an initial stress -t (t positive for compression) in the [111]

direction, the stress tensor [T'] is

r-

t o
| o o
o O

O 0 0\

|



The values o, and a, of the Lagrangian strain n,(O) and n,(O) can be

found from the two linearly independent equations in (7):

1+ 2a 1 4 1 1
- 772 t=5(Cp +2C12) +3Cu 8+ (FgCinn +5Ci +
Y1+ 20.1
1 2 8 2 2
+3 C123) 8 + 9 Cuse § + 3 Cruy § (o) + 0a3) +
4
+-3-C166 é (ul + 02)
1 2 1 1
0 =§(C11+2C12)Q-S’C‘+q6+(i‘8‘ Ci11 +—3'C112+
1 2 4 2 2 4
+ 3 C123) & -3 Cysg § -3 Cruy Saz - 3 Cyg6 Sap
where 6 = a; + 2a
§ 2 ay - az (8)

The Poisson ratio ¢ for the strain perpendicular to [111] direction

with the stress in [111] direction is -,fi which can be obtained from

a1
(8) by neglecting the second and higher order terms of a,. The result is
6 6 e
Cy1 + 2C12 - 2Cyy
@ = 2 3 6
2(c31 + 2C12 + Cuy) (9

In the last expression, a superscript 6 is added to emphasize that
ijsothermal elastic constants should be used for the initial strain, since

the process for the initial compression is an isothermal one.

For the infinitesimal part of the deformation [U’'] in (5), consider a

<>
travelling plane wave with a wave vector k.

uj = g . i’i exp [1(wt - k' * X")] (10)
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For a plane wave propagating along a general direction, the displace-
ment vector U' may be neither parallel nor normal to the wave vector. From
the matrix [A'] and this displacement vector U', one can calculate the
Jacobian, the Lagrangian strain nij (eq. 2)‘and the stress tensor [T'}

(eq. 7).

Substituting this [T'] into the equations of motion in an elastic

medium:
T'
i3 - -
§ axj pin (11

and neglecting the second and the higher order of U', one obtains a set of
three equations for U;, U;, and U; which can be written in the following

matrix form

U’ U’
1 2 1
[H] U’ =p V u' (12)
2 o 2
Ul! u'
g 33 3

where V is tge phase velocity of a sound wave, and

[H} is a 3 x 3 matrix whose elements contain the second‘and third order
elastic constants and the strains a; and aj.

For small strains one can consider the terms in [H] containing oy (i=1,2)
to be the perturbing terms. The problem is then to diagonalize {H] to the
zeroth order of o,. The calculation is in general quite tedious but much

i
simplified if pure modes exist.
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For wave propagating along EEO] direction ({.e. 2'-~axis) under a
uniaxial compression applied in ﬁllj direction (1'-axis), the compress-
ional wave is still a pure mode, since such a wave was originally a pure
mode, and under this compression the stress does not alter the displace-

ment of the particle motion. Hence one may consider the following wave

motion
U' =B exp [i(wt - k' x")] (13)
2 2 2
u' =U' =0
1 2

Substituting this into (11), one immediately obtains one of the eigenvalues
2
of DOV (second equation in (12)).

The remaining operator which is now a 2 x 2 matrix can easily be
diagonalized to the zeroth order of ui by applying a unitary transformation
with the unitary transform matrix constructed from the normalized eigen-
vectors of the unperturbed operator. For small strains such that the second
order terms of a, can be neglected in the Pxpressionjzz.oovz, the eigenvalues
are readily found from the diagonal terms.

For waves propagating along [112] direction the shear wave polarized in
[110] direction is still a pure mode under a compression in [111] direction.
The calculation resembles that for waves propagating along [110] direction
but is much more complicated. The expressions for poV2 are listed below

2
(eqs. 14 - 19). For convenience the expression of p,V under hydrostatic

pressure and under [110] compression are also listed (eqs. 20 to 26).
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(4)

11

Under uniaxial compression in [111] direction

For compressional wave in [110]

2
1
p V22 =5 (Cyy + C12 + 2Cuy) + {_Z(Cu + Cjp + 2Cyy) ©

1
+ 3 (Cyyy + 2Cyy2) (1 - 20) - % (€111 = C123) (1 - 20)

-+

Wk W

2
Ciyy (1 - 20) - 3 Cige (1 + 40‘)} oy (14)
For shear wave in [110] polarized in [110]

2 1 {.2 1
pov2t1 N —2— (Cll - CIZ) + 1_3_ (Cll - CIZ) (1 - 20) + 'g (Clll - C123)

1-20] a (15)

-

For shear wave in [110] polarized in [oo1]

2
1
PVopp = Cuu = 3 {ZC‘W (1 - 50) = 2 Cyus56(1 +0) + Cyyy (1 - 20)

+ 2Cy15¢ (1 - 20)} o) (16)

For shear wave in [112] polarized in [110]

2

1 2
00V32 = "6' (Cy1 = Cy2 + 4Cyy) + {- ‘5 (Cll - Ci2 + 4Cuy) o

4
+ ‘i‘g (C111 - C123) (1 - 20) - 5 Cyse (1 +0)

+ % Cruy - ‘g‘ Ciss 0} o ) (17)
Ter quasi-compressional wave in [112]
2 1 2 2
DOV33 = Tz‘ (5C11 + Cy2 + 8Cyy + R) + [3 511 (Cll - Cyo + Ckk)(l -g)

JZ 2
- —3 811 812 (€11 = €12 = 2C4) (1 = 30) = 255 (Cp) + Cyp +

2Cuu)0’] +
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1 2 1 2 1 2
*+ 3512 (C111 + 2C112)(1 - 20) + GG s - __."g. S11 812 = ¢ s12) (Cyyy -

2 2 8
- C123)(1 - 20) + (- §' s11 - 9—'72— 511 SIZ)CQSG (1 +0) +
+ 1.2 1+ 4 12
- 3 s11 ( 20) - 36 S11 8120 + 3 Sy2 (1 - 20) Ciyy +

2 2 4 2 2
tl3snt 37 snos12-o0) -3s812 (1 + ‘*UZ] Cies) o (18)

For quasi-shear wave in [112] polarized in [111]
2 1 2 ’
Po¥31 = 75 (5C1) + Cyp + 8&yy ~ R) + [% 812(C11 = €12 + Cuy) (1 ~0)

/2 2
+ 737 811 512(C1) - Cp2 = 2C4) (1 - 30) - 28)1(Cqy + Cyp +
1 2 1 2
+ ch‘“)c]‘l' ‘3‘ S11] (Clll + 2C112)(1 - 20) + (_9' sy +

V2 1 2
*t97 s11 812 - g s11)(Ciyy - Cpp3)(1 - 20) +

2 2 8
+ (- 3 S12 + 373511'512) Cyse (1 +0) +

W [t

2 2
+ [— s12(1 + 20) + ‘275 S11 S12 O+ % s11(1 - 20)] Ciyy +

2 2 4 2 2
+[§ S12 -~ _375811 812(1 —O) - '5 511(1 + 40) C166 a1 (19)

Throughout a; is the strain in the direction of the stress, [111]

o 1is the Poisson ratio - ap/ay where a; is the
strain in any direction perpendicular to the [111]

direction.

In addition

1
s11 =y ° 3%2’ (C11 = C12 = 2C4y) (19a)

812 = —'I% . ‘11_2' (Cll + 5C12 + AC:_}:\\ + R) (19b)




13

where
1

1 241 :
N ={—1-ZI: (Cyy + 5C12 + 4Cyy + R) + ﬁ' (Cll = Cy2 = 2Cyy) }Z (19¢)

R = {(Cn + 5C)2 + 4Cuu)2 +% (Cy1 - Cy2 - Zcuu)z} z (194)
(B) Under hydrostatic pressure*
For compressional wave in [100]
poV§ =Cyy + {c?l + 2C{, + 4Cyq + Cypq + 2c“2}a (20)

For compressional wave in [110]

2
=1 ] 8
DOVZ =3 (Cll + 612 + ZCL“_.) + {Cll + 2C12 + Z(Cll + C12 + ZCQL‘)-F

1
+ (C111 *+ 2C132) =5 (Cppy = Cyp3) + Cpuy + 2C166}‘1 (21)

For shear wave in [100) polarized in direction [100]

2
00V3 = C[,q + {Clel + ZC](:)?_ + 4C1“_* + Cl'-ﬂ-& + ZCXGB} o (22)

For shear wave in [110] polarized in [110]

2
pVy =

L

(.8 e 1
(€11 = C12) +1Ciy + 207 + 2(Cyy - Cr2) +5(Cyy -

[T

C123)} a (23)
For shear wave in [110] polarized in {001]

2 ’
DOVS = Cyuy +l‘5 C?l + chz + 4Cuy + Cyyy + ZCIGG} a (24)
{

*Bhagavantam and Chelam11 obtained expressions for the effective elastic
constants which were different from those obtained by Birch.9 1Two points
in B & C's derivation are subject to question. After corrections were
made on them!Z?, B & C's expressions agree with Birch's.
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(C) Under uniaxial compression in [110] directionlB’S.

For compressional wave in [001]

2
For shear wave in [110] polarized in [110]

2 i o
1 1l - "110
DOV = E‘(C]_l - C12) + {(1 - 0110)(C11 - CIZ) + '—'—_‘4 Ci11

[+ g
1 - 7110 + 20_. . 001 :
- 4 001 CllZ + —3" C123} o (26)

where aj is the strain in the direction of the stress, [110]
Opgp) and 031p are the Poisson ratios for strains in [001]
and [110] directions respectively under a stress in [110]

direction. Explicit expressions for these quantities follow:

6 .0
4C12 Cuyy .
9001 =775 3 8 8 g .2 a
C11(Cyy + Cy2 + 2Cyy) - 2 (Cy2)
8 ,.86 0 8 o .2
o110 = C11(Cyy + Cyp = 2Cyy) - 2(Cy3) (27b)

8 ,.0 8 e 8 %
C11(Cyy + Cy2 + 2Cyy) - 2(Cy))

By weasuring the velocities of sound wave under stress, one can
evaluate the coefficients of a or a; in equations 14 to 26 and solve for

the third order elastic constants.

14
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III. MATERIALS AND APPARATUS

NaCl and KC1 single crystals in the form of 1" cubes and with faces
oriented approximately in the 111 , 110 , and 112 crystallographic
directions were supplied by the Harshaw Chemical Co. The orientation of
the crystals was checked:by the Laue back reflection technique and the faces
of the crystals were then ground to within + 1/2° of the exact orientation.
After one face was oriented, the opposite face was then ground parallel to
the first one to within .00003 inches. The dimensions of the specimen were
measured with a supermicrometer (Pratt and Whitney) with a precision of
10 microinches.

10 Mc compressional and shear waves were generated respectively by
3/8" X-cut and Y-cut quartz transducers with an active circular area of
1/4" in diameter. The transducers were bonded to the specimen by phenyl
salicylate (''salol").

Velocity measurements were made with a pulsed ultrasonic interferometerlA
constructed by A. D. Colvinls. A brief description of this apparatus is
given below:

Two pulses with a flat top of duration of 1 us are gated out from a
10 Mc continuous sinusoidal wave. The time separation between the two
pulses is variable from 3 to 10 us on one range and 4 to 40 on another range.
The pulse height of the second pulse can be adjusted from 0.5 to 1.0 as

large as the first one. The echoes of the pulses are picked up with the

same transducer and displayed on an oscilloscope. For the appropriate time



separation and ratio of pulse height, cancellation between the second echo
of the first pulse and the first echo of the second pulse occurs at discrete
frgquencies. From the values of these frequencies nearest to the resonant
frequency of the quartz transducer one can obtain the acoustic velocities15

According to the procedure of Williams and Lambla’ 1 one includes by an

iterative procedure a correction for the phase change arising at the quartz-
specimen interface. Additional corrections for changes in transit path
because of stress and temperature are also included.

The velocities measured in the room temperature range were normalized
to 25°C by the following equation:

V= VT - (T - 25) (28)
where 4 a1 W3S the slope of the velocity vs temperature graph determined in
the preliminary measurements for various modes in the room temperature range
under atmospheric pressure.

A uniaxial compression was applied to the sample through a cylindrical
movable piston in a cylinder made of hard steel. The surfaces of the piston
and the bottom of cylinder between which the samples were compressed were
carefully surfaced and kept parallel. The stress was applied to the piston
through a hand-operated mechanical press. The cage of the press was sur-
rounded by foam insulators to reduce the temperature fluctuation and a
Cu~constantan thermocouple together with a Reeds and Northrup K-3 potentio-
meter were used to measure the temperature to .01°C.

The strain in the direction of the applied stress was measured with SR-4

strain gauges of type A-7 (Baldwin-Lima-Hamilton Corp.). Two pairs of strain

16
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gaupes were honded on the opposite #ilQ} faces of the specimens. The two
gauges on the same side were connected in series to give an averase strain
of that side. The reading of the strain on both sides were averaged to give
the average strain of the specimen. 1In a typical run the difference betwcen
tiiec strains on both sides was less than 10% for a maximum strain of 70 x 10_6
Each pair of the strain gauges on the opposite faces of the sample form an
arm of the two AC bridges in the two-channel recorder.

A dummy sample with the same type of strain gauges and the same con-
nections was used as a control. Each pair of strain gauges on this dummy
forms the other arm in an AC bridge and balances the corresponding pair of
gauges on the test specimen. The dummy sample was kept at the same tem-—

perature as the specimen to eliminate the effect of temperature change on

the reading of the strain.
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IV. MEASUREMENTS

The temperature dependence of the velocities for various modes in
NaCl and KC1 obtained in preliminary measurements together with the
values of velocity at T=25°C are listed in Table I. In the correction
for the thermal expansion, the following coefficients of linear thermal

. 16
expansion obtained from Henglein's measurements™ were used:

NaCl KE1

l%é X ]0“6 de,tg_1 C 110 x 107" deg = C




TABLE I
Temperature Dependence of Velocity of Sound Waves in
NaCl and KC1l Together with the Values of Velocity.

(A1l values are at 25°C).

NaCl Py = 2.162 g/cm3
Direction Direction Slope of
of of ve}l. vs. temp. Velocity

Propagation Polarization (10 ' cm/us/deg C) (cm/us)
111 111 -586 .44163
110 110 -827 .45058
110 110 -1477 .29043
110 001 -177 .24298
112 112 -903 45171
132 111 -988 .27355
112 110 -659 .25970

KC1 P, = 1.986 g/cm3
111 111 -517 .36679
111 110 -1116 .25977
111 112 -1122 .25941
110 110 -834 .39014
110 110 -1453 .29106
110 001 -100 .17828
112 112 -1045 .39809
112 111 ~805 .24656
112 110 -701 .22408

19
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The adiabatic second order elastic constants at 25°C are determined
2
from the pOV of the pure modes using the method of least squares. Their

values are shown in Table II.
TABLE 1II
Adiabatic Second Order Elastic Constants

of NaCl and KC1 CE{itals at 2§°C
(in units of 10 dynes/cm”)

Ci Ci2 Cyy
NaCl .4934 .1293 .1278
KC1 .4076 .0705 .0632

Except Cy, of NaCl, these values agree with Lazarus' values to within half
a percent. For C;, the difference is about 6%.

The velocities of ultrasonic waves propagating along the [110] and
[112] directions under a uniaxial compression in [111] were measured as
functions of strain. After corrections had been made for the deformation
and the thermal expansion, and the velocities were normalized to 25°C
using eq. 28, the values of pGV2 were plotted against the strain (-o;) in
the direction of the stress. Several typical graphs of such plots are
shown in Figs. 1 to 3 for NaCl and KCl. In these measurements, data were
taken during the process of increasing and decreasing stress, as indicated
respectively by circles and crosses in the graphs. The curves of pOV2 vs

strain are quite linear. One of the runs shows the effect of plastic

deformation (Fig. 3).

20
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The KC1 sample was compressed to a strain of 75:»:10_'6 during the velocity
measurement, the lonad was next reduced to the weight of the piston and
then increased again. After a strain of about Q0x10—6 drastic deform-
ation occurred, and the calculated velocity drops as no account was
taken of the chane~ of the path length with plastic deformation. After
the specimen was unloaded, the residual plastic strain was 45x10-6.

The strain was then recalculated excluding the permanent set, and the
thickness remeasured after the transducers were removed. The poV2 as
function of the recalculated strain is shown on the same graph (curve C).
The weighted average of the slope before the plastic deformation is .3384
with a standard deviation o of .0105. The slope after the plastic deform-
ation is .3025. Since this value is beycnd the lower 30 limit, .3069, the
difference in the slope before and after the plastic deformation appears
to be signifirant. The effect is probablv caused by the dislocations gen-
erated in plastic deformation. The effect of dislocations on the third

order elastic constants has also been observed by Hikata et a117 in the

harmonic generation of ultrasonic waves in aluminum.

It is tempting to conclude that the lower of ooV curve by plastic
deformation is also a dislocation effect but some systematic error could
also have been introduced in the length measurement after removing the
transducer and bonding material.

A summary of the slopes of povz vs (-a;) graphs for various modes of

propagation in NaCl and KCl under uniaxial compression in [111] direction

is shown in Table III. For the uniaxial compression in [110]}, the results
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for NaCl are shown in Table IV; no measurements were made on KCl under such
a compression.

Lazarus has measured the velocities of sound waves in NaCl and KC1

2
under hydrostatic pressure. From his data6, the quantity pOV can be

2
calculated and plotted against the strain (- a). The slopes of pOV vs

(-a) thus obtained are listed in Table V.
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2
Slope of oV vs (-ay) graph under uniaxial compression 11 [111]

2

Slope of PV Vs (-ay)

- W SN G G G GE =S 0 S BN G A U A . W .
<

Mode ( 1012 dvnes/ cmz)
Direction Direction NaCl KC1
of of
Propagation Polarization | Measured Weighted |Measured Weighted
Values Average | Values Average
- - *
sz 110 110 4965 .4965 .4926 L4485
+.0091 3938, +.0231
L4874
Vo1 110 110 .6839 .6558 .3143 .3247
.6505 +.0087 (R11) +.0076
.3645
(R12 Up)
.3281
(R12 Down)
3442
(R13 Up)
.3025
{(R13 Down)
262 110 001 L3741 .3724 .1830 .1830
.3698 +.0029
Vi, 112 110 .1792 .1736 .1231 .1231
.1641 +.0049 +.0023
.1538
_— —-— *
V33 112 112 .3137 .3234 . 4367 .4367
.3420 +.0067 +.0048
Vi1 112 111 .9482 .8706 .3354 .3354
.8537 +.0303 +.0032

*

Velocity measurements were made with cancellation between the third
echo of the first pulse against the first echo of the second pulse
in order to obtain sharper cancellation.




TABLE IV

Slope of pOV vs (-a;) graph for NaCl under uniaxial compression // [110]

- D N = W W

2
Slope of oov vs (-aj) graph
Mode (1012 dynes/cm?)
Direction Direction
of of Measured Weighted
Propagation Polarization Values Average
V'33 001 001 -1.627 -1.564
=1.467 + .053
AP 110 110 +1.338 +1.218
1.068 + .052
1.371
1.199
TABLE V
2
Slope of ooV vs (-a) graph under hydrostatic pressure
(Calculated from Lazarus' data)
2
Slope of poV vs (-a) graph
Mode (10!? dynes/cm?)
Direction Direction
of of NaCl KC1
Propagation Polarization
V1 100 100 +7.2838 + .0730 +5.1973 + .0514
V2 110 110 +3.7832 + .0813 +2.5786 + .0417
V3 100 1 100 - .1597 + .0011 - .4195 + .0020
V4 110 110 +2.8361 + .0093 +2.4683 + .0134
*
V5 110 001 - .1956 - .4325 + .0025

*
From the first two measurements.
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V. RESULTS AND DISCUSSION
A. The Linear Combinations of The Third Order Elastic Constants.

From the adiabatic (Table I) and isothermal (Appendix) second
order elastic constants, the values of sy;, sj3, 0, 93310, Opp) can be
calculated. They are listed in Table VI to be substituted in eqs. 14
to 26. By equating the coefficients of (-a;) in these equations to
the slopes of povzvs (-ay) graphs, one obtains sets of linear simul-
taneous equations for the determinatfoncof the third-order elastic

constants. These coefficients for these equations are shown in Table VII

for NaCl and Table VIII for KC1.
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TABLE VI

2 2
Values of sj), 2s)) S)2, s)p and the Poisson ratios o, oggg,

and 0110
Expressions Calculated Value
NaCl KC1
2
s11 .00843 .06895
2811812 (19a) to (19d) -.18287 ~-.50674
2
S12 99157 .93105
Ddirection Direction
of of
Stress Strain 6 e
Ci1 + 2Cy2 - 2Cyy
111 41111 .271 .337

3
2(Cy; + 2C12 + Cg?g,)

e, .6 .06 .0 6 2
110 110 C11(C11¥C127204) 2012 155 068
0 ,.0 8 e <* :
Clel(cll+C12+2Cuh)"2C12

110 001 s ¢, .357 .554

6,.6..0 8 g 2
C11(C11+Cp+2Cyy)-2Cy
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TABLE VII

Linear Combinations of Cijk for NaCl

Under [111] compression:

Cii1 + 2C112 Ci111 - Cy23 Cysg Ciyy Cigg = Slope-2nd Order Terms

m—— Zantmp———

Vao: -.1526 +.0763 0 -.1526 +1.3895 +.0204 + .0110 (29)
v2t1: 0 -.0763 0 0 0 +.7670 + .0091 (30)
V2t2: 0 0 +.8474 -.1526 -.3053 +.3421 + .0033 (31)
V32: 0 -.0254 +.5649 -.6667 +.3614 +.0154 i_.0056. (32)
V33: -.1513 +.0687 -.0707 -.1701 +1.4350 -.1458 + .0112 (33)
V31: -.0013 -.0432 +.3531 +.5318 -.7122 +1.1027 + .0321 (34)

Under [110] compression:

Ci11 Ci12 Ci23 Cusg  Ciuy  Cigs = Slope-2nd Order Terms

V53: +.1551 -.6427 0 0 0 0 -1.869 + .053  (35)

.1607 +.2382 -.0775 0 0 0 +1.452 + .052 (36)

[] . -
V2t1' -
Under hydrostatic pressure (calculated from Lazarus' data)

Ci11 + 2Cqy12 Ci11 - Ci123 Ciuy  Ciss = Slope-2nd Order Terms

v, -1 0 0 0 +9.9668 + .0730 (37)
v, -1 2 -1 -2 +6.2460 + .0813 (38)
v, 0 0 -1 -2 +1.0608 + .0011 (39)
v, 0 - 0 0 +4.2738 + .0093  (40)
v, 0 0 -1 -2 +1.025 (41)

The above equations are to be read horizontally, e.g.,

for 2° .8474(:“55 ".1526(:11‘1‘ -.3053(:155 = ,3421

Voe
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TABLE VIII
Linear Combinations of Cijk for KC1
Under [111] compression
Ci11 + 2C332 €311 - €123 Cuseg  Ciuy Cies = Slope=2nd Order Terms
V22: -.1084 +.0542 0 -.1084 +1.5664 +.0405 + .0231 (29')
v2t1: 0 -.0542 0 0 0 +.3978 + .0076 (30')
Vth. 0 0 +.8916 -.1084 -.2168 +.1540 (31")
V32: 0 -.0181 +.5944 -.6667 +.4499 -.0096 + .0023 (32')
V33: -.1009 +.0350 -.1925 -.1430 +1.5707 +.0688 + .0048 (33'")
Vit -.0075 -.0170 +.4897 +.5929 ~.6710 +.4722 + .0032 (34')
Under hydrostatic pressure (calculated from Lazarus' data)
Ci11 + 2112 C111 - Cy23 Ciuy  Cyes = Slope-2nd Order Terms
vy -1 0 0 0 +7.3477 + .0514 (37')
v, -1 2 1 -2 +4.3079 + .0417 (38')
V3: 0 0 -1 -2 + .3535 + .0020 (39')
v,: 0 2
4 2 0 0 +3.6625 + .0134 (40')
Ve 0 o -1 -2 + .3405 + .0025 (41")

Before solving these equations,

we shall check their internal consistency.



.

29

B. Internal Check Among the Measurements under [111] Compression:
From the coefficients of (-a;) in the equations (14) to (19), one

can show that (33) and (34) can be expressed in terms of (29) to (32) as:

2 2 S11 812
(29) x sy + (30) x (511 - —
/2

(33)

2 2511812

2 1
+ (31) x (s3; + ) + (32) x (-s,, - =_ s11512) (42)
3 17 e TR
2 2 511812
(34) = (29) X S]] + (30) x (812 + ——
V2
(D x (s; feninz (32) x (-s;p + & ) (43)
= X (810 - —) + x (-sy12 + = sq318 3
12 = 12 = 11512

Hence there are two internal checks. Same relationships also hold
for equations (29') to (34') for KCl.

For the measurements on NaCl, the right side of (42) 1is .0341 + .0103
while the left side is -.1458 + .0067; the right side of (43) is
1.076 + .0166 while the left side is 1.103 + .0303. For the measurements
on KC1, the right side of (42) is .0908 + .0309 while the left side is
.0688 + .0048; the right side of (43) is .5111 + .0100 while the left side is
4722 + .0032.

It can be seen from these internal checks that the measurements on KC1l
under [111] compression are reasonably consistent. The difference is within
the limit of three times the standard deviation. For NaCl one of the internal
checks (42) is poorly satisfied and it is thought that the blame lies with the
V22 measurement. In this measurement the output impedence of the gate circuit

and the cable were improperly matched and hence the input signal to the trans-

ducer was very small. This mismatching was remedied for the other subsequent
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measurements and a considerably larger S/N ratio was obtained which enabled
more accurate measurements. The equation (43) again is satisfied quite well.
C. Internal Check Among the Measurements Under Hydrostatic Pressure

Among the five equations (37) to (41), only three are linearly inde-

pendent. Hence there are two internal checks. It can be shown that

(39) or

(38) = (37) - (40) + (41)

(48)

Same relationship also holds for eqs. (37') to (41') for KCl.

From Lazarus' data for NaCl (Table VII), the right side of (44) using
(39) is 6.754 + .083, or using (41) is 6.719, while the left side is
6.246 + .081; for KC1l (Table VIII), the right side using (39) is
4.039 + .066, or using (41) is 4.026 + .067, while the left side is
4.308 + .042. The discrepancies are all within the limit of three times
the standard deviation.

D. Determination of the Five Third Order Elastic Constants

From the measurements under [111] compression and those under hydrostatic
pressure by Lazarus, five third order elastic constants can be determined. A
preliminary question is how to weight these two sets of equationms.

For NaCl the averaged probable error in the data for the {111] compression
(Table III) is about 1/4 of that in the data for the hydrostatic compression
(Table IV). For KC1l it is about 1/3. Hence in solving for the elastic con-
stants, we shall weight the set of equations for NaCl under [111] compression
by 4 against the set under the hydrostatic pressure. For KC1l, the corres-
ponding set will be weighted by 3.

The values of the five third order elastic constants determine from these

weighted equations using the method of least squares are shown in Table IX.
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TABLE IX
Values of the Five Third Order Elastic Constants for NnaCl and KC1l

12 2
at 25°C (10 dynes/cm)

Ci11 *+ C1y2 Ci11 = Cy23 Cyse €ius. Cres_

NaCl -9.91 -9.10 .271 257 -.611
+ .04 + .08 +.014  +.016  +.007

KC1 -7.44 ~7.15 .118 .127 -.245
+ .01 + .02 +.004  +.005  +.002

For the purpose of comparison, calculations in which the set of
equations under [111] compression was weighted by 1 and 10 were also
made. The largest shifts were about 8% in C;11 - Cj23 for NaCl and
187 in Cyyy for KCl. For the other constants, the shifts were less
than 6%.

From the values of Cygg and Cy4y, it can be seen that one of the
Cauchy relation for third order constants, Cus5g = Cyyy, is satisfied
to within the probable error for both NaCl and KC1 crystals at room

temperature.
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E. Evaluation of the Six Third Order Elastic Constants

Since from the measurements under the [111] and hydrostatic com-
pressions only five third order elastic constants can be determined,
an effort was made to obtain other independent equations by making
measurements under a unixial compression applied in the [110] direction.

Unfortunately, when such a compression is applied, the resolved
shear stress in the easy slip direction of dislocations in the slip
planes does not vanish, and plastic deformation sets in easily and
affects the measurements. Moreover, as it can be seen from the equations
(35) and (36) for the [110] compression that the numbers on the right side
are much larger than the coefficients on the left side. A slight fluctu-
ation in the measurement effects the final result of the six third order
elastic constants very much. For example, on the right side of equation
(36) a change from 1.45 to 1.30 (which is within the limit of three times
the standard deviation for measurements under this compression) causes the
resulting Cy;, changing from 0.29 to-0.50 and the resulting Cy,3 from -.413
to +.014. Hence the data obtained from the [110] compression were not used
in the evaluation of the third order elastic constants. However, they can
serve as a check to the evaluation by another method as will be described
below.

Since the Cauchy relation Cyg5g = Cjyy is satisfied to within the
probable error we shall assume the validity of the other two Cauchy relations
Ci23 = Cys6 and Cyy2 = Cyge, although this assumption is open to some ques-

tion because, as Ntan'yanléas shown, only the relation Cyus5g = Cyyy
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can be expected to hold at all temperatures even for a central ferc~ model.

The other two equalities hold only at 0°K. However, we shall use these

relations to estimate the values of C;;;, Cy1», and Cy,2 at room temperature.

From the results in Table IX,

(For NaCl) (For KC1)
Cinn + 2Cy12 = -9.91 -7.44 (45)
Ci11 - Ci23 = -9.10 -7.15 (46)
If we assume
Ci23 = 3(Cuss + Cruw) - .264 .123 (47)
C112 = Cie6 = ~-.611 -.245 (48)

then we can check the consistency of these equations.

The relation relating these four equations is

(45) - 2 x (48) = (46) + (47) (49)
For NaCl, the left side of (49) is -8.69 while the right side is -8.84; for
KC1l, the left side is -6.95 while the right side is -7.03. Hence the intro-
duction of the other two Cauchy relations does not cause appreciable incon-
sistency among these equations. Using the method of least squares, one can
obtain the estimated values of Cj;;, Cy12, and Cyo3 from the four equations
(45) to (48). The results are shown parenthetically in Tahle X.

Using these extimated values, one can check the results obtained from
the [110] compression in NaCl. For V§3one obtains -1.00 for the left side
of equation (35) while the value on the right side obtained through the
experiment is -1.87. For vétl , one obtains 1.25 for the left side of

equation (36) while the value on the right side is 1.45. Although the

value for Vétl are rather close, the discrepancy in V'33 is quite large.



This indicates that the internal consistency in the measurements under the
[110] compression is poor. This may be caused by the dislocation contrib-
ution to the third order elastic constants and also the small range of
strain which reduced the accuracy of the measurements.
G. Comparison with Theory

While this experiment was underway, A.A. Nran'yan18 published values
of the third order elastic constants of NaCl - type alkali halide crystals.
lie used the Born-Mayer model in which the potential energy between two

particles was represented by the following expression:

RO
mo - v
= (+ + B K
%N Ruv (—)uv-———g—— uv e b
mo uv
R
uv

Where R:S is the distance between the equilibrium positions of the uth

particle in the mth cell and the vth particle in the Oth cell in the

deformed lattice
e 1s the electronic charge

buv and Buv are two constants describing the repulsion and

The first term represents the contribution from the Coulomb interaction
and the second represents the repulsion of their electron shells.

The theoretical values of the third order elastic constants and their
linear combinations at room temperature are listed in Table X together with

the present experimentally determined values.

34
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TABLE X
Comparison between Experimental and Theoretical Values of Ci1k
and Their Combinations at 25°C (In Brugger's definition of

C,., and in units of 1012 dynes/cmz)

ijk
NaCl KC1
Exp. Th. Exp. Th.
Ci11 (-8.80) =-5.45 (-7.01) -5.07
Ci12 (-.571) -.688 (-.244) -.458
Ci123 ( .284) .269 ( .133) .148
Ci11 + 2Cyy2 -9.91 -6.83 -7.44 -5.99
Ci11 - Ci123 -9.10 -5.72 -7.15 ~5.22
Cysg 271 .325 .118 .207
Ciuy .257 .325 .127 .207
Cise -.611 -.63 -.245 -.40

Parenthetical values are the ones estimated by assuming the Cauchy relations.

It is seen that the sign and the order of magnitude of the theoretically
predicted values agree with experiment although quantitative agreement is

lacking.



VI CONCLUSIONS

The relations between the velocities of sound waves propagating
along the [110] and [112] directions in a cubic lattice of high sym-
metry under a unixial compression applied in [111] direction were
derived. The velocities of ultrasonic waves were measured at room
temperature as functions of the strain using the pulsed ultrasonic
interference technique. From the measurements under the [111] com-
pression and those under hydrostatic pressure, the values of five
third order elastic constants of NaCl and KCl at room temperature were
obtained. It is seen that the Cauchy relation Cys5g = Ciyy is satisfied
to within the probable error for both NaCl and KC1l single crystals at
toom temperature. By assuming the validity of the other two Cauchyv
relations, one can estimate the values of Cy;;, Cy12, and Cy33. The
theoretical values predicted by A.A. Nran'yan were compared with the
experiment. Although the sign and order of magnitude agree quite well,

some discrepancies exist between the values.
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APPENDIX
Adiabatic and Isothermal
Second Order Elastic Constants

For infinitesimal strains, it has been shownl9 that the differences

between the adiabatic and isothermal elastic constants are:
2( )2
a (Cy; +2C12) T
o 6 (o] 6
€11 - Cyp =Cyp - Cy2 =
va

o 6

Cyy = Cyy = 0
where a is the linear thermal expansion coefficient, T is the absolute
temperature and Cv is the specific heat at constant volume. For NaCl
at T = 300°K, o = 38.3 x 10°0 /deg C, Cy; + 2C15 = .752 x 10’ dynes/cm’
and p = 2.162 g/cm3. With Cv = ,811 J/g deg C, one obtains
o 6 12 2 (o]
Ci; = Cj1 = .0142 x 107" dynes/cm”. From the values of Cij in Table II,

0 6 12 2

one obtains Cy; = .4792, Cy, = .1151 (10" dynes/cm).
For KC1 at T = 300°K, a = 36.7 x 10#6/deg C, Cj1 + 2Cy5 = .549 x 1012 dynes/cm2

and ¢ = 1.986 g/cm3. With c, = .644 J/g deg C, one obtains

¢, - ¢f) = .0095 x 101¢

dynes/cn”. From the values of C;, in Table II,

one obtains C?l = .3981, Cf; = .0610 (1012 dynes/cmz)

3
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FIGURE CAPTION

poV vs strain for shear wave in NaCl under stress [111].
Curve (A) for wave propagating in [112] and polarized in [111].
Curve (B) for wave propagating in [110] and polarized in [001].
Circles measured during increasing stress; crosses measured
during decreasing stress.
pov vs strain for shear wave in KC1l under stress {111]. ‘
Curve (A) for wave propagating in [112] and polarized in [111].
Curve (B) for wave propagating in [110] and polarized in [001].
Circles measured during increasing stress; crosses measured
during decreasing stress.
pov vs strain for shear wave in KC1l under stress {111}
propagating in [110] and polarized in [110]. (A) Before
plastic deformation.
* Run 12 up; x Run 12 down; o Run 13 up
(B) After plastic deformation. A Run 13 down
(C) After plastic deformation (with the plastic strain

excluded and using the thickness after the plastic

deformation) A Run 13 down.
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